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Why Alfalfa?

Third most widely produced crop in U.S.
* ~50 million tons harvested from 6.1 million hectares in 2021.

Global dairy and beef industries rely on alfalfa for high protein feed.

Atmospheric CO, and N fixation:

* Deep roots (6-15 m) sequester CO, (helps mitigate GHG-caused climate change).

* Symbiosis with soil bacteria fixes nitrogen.
* Restores N-depleted soils.
* Reduces the need for fossil fuel-based fertilizers.

It’s a perennial that typically persists/can be maintained for 4-6 years.

2"d Green Revolution goals of improving plants through their abiotic stress
tolerance and nutrient/water acquisition/useability and efficiency...

* RSA Ideotypes achieve these goals.

* Some RSA research has already shown gains in yield, winter survival, and P uptake as a
function of RSA type.




Why Root Structure Architecture?

* Roots serve many functions for plants:
e Structural support.
* Water & nutrient acquisition organs.
* Storage areas.

* Symbiotic interfaces for relationships with other
organismes.

* Roots that perform optimally for a given set
of conditions are the goal...Designer roots
(ideotypes):

* For improved yield.

* For H,0 and N acquisition.

* For P acquisition.

* CO, sequestration.

 Drought resistance.

* Winter survival.

* Fall dormancy.

e Pest/disease/environmental conditions.
* ..and more.
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oot Ideotypes are Needed to Address Climate
Changes and Shifting Land Potential...

USDA Plant Hardiness Zone Map
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The Soil Productivity Index

Legend

Soil Productivity Index

o
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Taxonomically based, ordinal estimates of soil productivity
from USDA-NRCS soil survey data as described in:
Schaetzl, R.J., F.J. Krist Jr., and B.A. Miller. 2012.
A taxonomically based ordinal estimate of soil productivity
for landscape-scale analyses. Soil Science. 177:in press. B

B s High
Map by Bradley Miller (bamiller@msu.edu), I
Michigan State University, Department of Geography, 2011.




What is Root Structure
Architecture (RSA)?

* RSA refers to the spatial configuration of the
entire root system.

* RSA is composed of:

* Morphology

* The surface shape, pattern, and size of individual plant root
parts:

* Primary, secondary etc. growth.
* Root epidermis characteristics including root hairs.

* Topology

* How individual plant root parts are connected in terms of
axes and branching.

e Distribution

* How individual plant root parts are distributed within a root
system.

* Can be used to study biomass or length as a function of:
* Soil depth
* Distance from the stem...and more.




Study Objectives

T B B
* Compare Al model predictions:
« Random Forest + feature traits. >/
* ResNet-18 + segmented images. IN

 Test the ability of confident
machine learning (CL) and
reactive machine learning (RL) to:
* Minimize subjective labeling errors.

* Improve labeling and prediction
accura C| es. Root phenotypes from UMN4561 and UMN4563 fourth cycle progenies.

Taproot (T) Branched Taproot (TB) Branched Root (B)



Why Artificial Intelligence?

e Benefits of Al:
e Speed.

* Improved accuracy.
e Reduced error (automation). m
* Capable of handling large amounts of data.

 Ability to reveal patterns in data.
 Mimic human intelligence.
* Reduced subjectivity (human bias).

e Canincrease phenotyo‘oic selection speeds with early/rapid RSA
analyses (~2-week-old plants, Bucciarelli et al., 2021).

Pheto by Stephen Adsmus

Root structure architecture analyses coupled with Al is a
push toward faster, more accurate, and less subjective
phenotyping...
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* Two image datasets:

* St.

Paul, Minnesota populations (617 images).
Bred for taproot type and branched type RSAs (UMN3233 & UMN3234).

* Burneyville, Oklahoma population (264 images).

Commercial line (America’s Alfalfa Alfagraze 600 RR).

* Sampled/studied by Mattupauli et al. (2019) for RSA changes regarding root
rot disease.

* Labeled by three experts using a protocol.

Taproot (T), Intermediate (TB), and Branched (B).

* Segmented into binary images.
* Image augmentation applied (881*10 images).
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Models Tested:
]

ML - A subset of Al that includes statistical methods and techniques that

allow machines to “learn” and make improvements at tasks via experience. e S et— a n

DL - A subset of ML that includes algorithms permitting software to self-train
and perform tasks such as speech and image recognition via exposing

multi-layered neural networks to large amounts of data. a n O I I l O re S
CNN - Convolutional neural networks are specifically designed for image data
and tasks involving spatial relationships of imagery. A

Machine
Learning

Deep
Learning

@

RNN - Recurrent neural networks explicitly analyze sequential data structures
or time series data. They are distinguished from CNNs by their“memory” ‘ ligpalbzess: |

which takes prior inputs to influence current inputs and outputs. ,L
é B
PN

C
® @
e ResNet: o*®e <%0 o‘oig ;:'*o o‘oig ::.*o
Tree - A Tree-B Tree-C
° Deep CNN (DNN) Prediction 1 Prediction 2 Prediction 3
» Several model sizes to choose from (18, 34, 50, 101, and 152). R v >

Average of All Predictions

e Residual “Res” network “Net”. -

Random Forest Prediction

* |dentity shortcut connections can bypass intermediate layers (solid lines in
adjacent figure B).

* Uses images (pixels) as input.

* Random Forest:
e Supervised ML algorithm.
* Randomly samples data and builds series of decision trees.
* Uses an ensemble of decision trees to make predictions.
* Can help reduce overfitting and bias.
» Uses feature data (tabular data) as input.
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Confident Learning (CL) and Reactive Learning (RL)

e Confident learning (Northcutt et al., 2021) involves using the original
model class prediction accuracies to determine label confidence:

* Uses a class’s probability threshold to determine label accuracy (confidence).
* Labels identified as low confidence are subjected to Reactive Learning.
* CLis a 3-step process:
* Pruning noisy data (searching for mislabeled data)
e Counting with probabilistic thresholds (training on clean data)
e Ranking which data to use during training (training with confidence)
* Reactive Learning:

* Image label error corrections based on CL analyses.

* Why CL+RL Methods?
 We want CLEAN/TRUE DATA!!!
e Garbage in = garbage out (model or data labels)



Datasets and Label Correction Combinations

* Minnesota data only ¢ ResNet-18 Cross-population ¢ ResNet-18 Pooled

* Original labels * Eight permutations * Two permutations
* ResNet-18 * Training/Testing * Training/Testing
e Random Forest * OK original/MN original * Pooled original labels
e Corrected labels * OK co-rr.ected/MN original e 881 i.m'ages
« ResNet-18 * OK original/MN corrected * Pooled orlglna! labels
* OK corrected/MN corrected * Only confident
* Random Forest . - label
* MN original/OK original abels
* MN original/OK corrected * 608 images
« MN corrected/OK original * Highest ResNet-18

overall accuracy in

* MN corrected/OK corrected study (~75%)



Results

* CL algorithm:

* Minorly improved the Random Forest prediction
accuracies (~1%).

* ResNet-18
* Cross population prediction accuracy improved ~8-13%
* Highest accuracy data combinations:

* CL/RL corrected datasets for predicting taproots
(V86%).

e Pooled dataset + CL (~75%).
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Model Prediction Accuracies

* Confident pooled data:

* Highest overall accuracy using ResNet-18 (~75%).

* Highest prediction accuracy for Taproot class RSA (86%).

e ResNet-18 and MN corrected label dataset.

* Highest Intermediate class RSA (65%).

ID # Input Model and Dataset Combinations Training Data Testing Data R A EE c RL Analysis
(B) (T) (TB) Accuracy Applied Applied Level
1 Feature Data (38) Random Forest - MN data only (n=617) MN original labels MN original labels 0.865 0.856 0.711 0.828 No No I
2 Feature Data (38) Random Forest - Current Study - MN data (n=617) MN corrected labels MN corrected labels 0.9 0.83 0.8 0.838 Yes Yes Il
3 Image ResNet-18 - MN data only (n=617) MN original labels MN original labels 0.81 0.82 0.29 0.700 No No I
4 Image ResNet-18 - MN data only (n=617) MN corrected labels MN corrected labels 0.73 0.67 0.65 0.679 Yes Yes Il
5 Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) MN original labels OK original labels 0.57 0.68 0.21 0.447 No No |
6 Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) OK original labels MN original labels 0.58 0.53 0.27 0.492 No No |
7 Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) MN corrected labels OK original labels 0.73 0.55 0.17 0.458 Yes Yes Il
8 Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) MN original labels OK corrected labels 0.83 0.57 0.06 0.491 Yes Yes Il
9 Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) OK corrected labels MN corrected labels 0.54 0.85 0.24 0.556 Yes Yes Il
10 [Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) MN corrected labels OK corrected labels 0.72 0.82 0.32 0.576 Yes Yes Il
11 [Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) OK original labels MN corrected labels 0.65 0.55 0.307 0.480 Yes Yes Il
12 |Image ResNet-18 - Cross-population MN (n=617) and OK (n=264) OK corrected labels MN corrected labels 0.54 0.85 0.24 0.513 Yes Yes Il
13 |Image ResNet-18 - Combined MN and OK data (n=881) Pooled original labels Pooled original labels 0.72 0.79 0.33 0.637 Yes No 1}
14 |Image ResNet-18 - Combined MN and OK data (n=608) Confident pooled original labels Confident pooled original labels 0.8 0.86 0.55 0.748 Yes No Il




Principal Component Analysis

e Used to visualize the label
correction process...

A) Original OK Labels

B) Corrected OK Labels

e Taproot

Branching Taproot

eBranched
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White

Conclusions

Gray

e RSA images as direct inputs into Deep Neural Networks:

e Suitable replacement for traditional methods:
* Level | (manual measurements).
* Level Il (features as input).

* Less error-prone than Level | and Il.
* Less human input = less human bias.

Gray

* Confident Learning and Reactive Learning:
* Low-cost and time-efficient.
* Improve performance and may reduce overparameterization.
* Improved ResNet-18 prediction accuracies ~11-13%.

* Model refinements are needed to address shortfalls in
prediction accuracy of intermediate RSA class.

. En_g(rﬂember RSAs of the distribution are easier to classify than the
middle...

* Continuous traits can be difficult to classify...
 Human labelers also have difficulty with intermediate RSA labels...
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Future Directions...

* Deploy ResNet model in mobile device RSA application (a
mobile App)

e Put Al-driven RSA image analysis into farmers and stakeholder hands.
* Test methods to create synthetic data used for model training.

* Couple Al RSA analyses results with downstream traits such as
yield, winter survival, etc.

* Investigate the possible relationship between RSA and yield via
root/shoot allometry.

* Include digestibility, maturity, and biomass estimations based
on image analyses into the mobile App functions.
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Simulated roots — Lobet et al. (2016)
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