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Why Alfalfa?

• Third most widely produced crop in U.S.
• ~50 million tons harvested from 6.1 million hectares in 2021.

• Global dairy and beef industries rely on alfalfa for high protein feed.
• Atmospheric CO2 and N fixation:

• Deep roots (6-15 m) sequester CO2 (helps mitigate GHG-caused climate change).
• Symbiosis with soil bacteria fixes nitrogen.

• Restores N-depleted soils.
• Reduces the need for fossil fuel-based fertilizers.

• It’s a perennial that typically persists/can be maintained for 4-6 years.
• 2nd Green Revolution goals of improving plants through their abiotic stress 

tolerance and nutrient/water acquisition/useability and efficiency…
• RSA Ideotypes achieve these goals.
• Some RSA research has already shown gains in yield, winter survival, and P uptake as a 

function of RSA type.



Why Root Structure Architecture?

• Roots serve many functions for plants:
• Structural support.
• Water & nutrient acquisition organs.
• Storage areas.
• Symbiotic interfaces for relationships with other 

organisms.

• Roots that perform optimally for a given set 
of conditions are the goal…Designer roots 
(ideotypes):

• For improved yield.
• For H2O and N acquisition.
• For P acquisition.
• CO2 sequestration.
• Drought resistance.
• Winter survival.
• Fall dormancy.
• Pest/disease/environmental conditions.
• … and more.

From Weihs et al. (2024)



Root Ideotypes are Needed to Address Climate 
Changes and Shifting Land Potential…





What is Root Structure 
Architecture (RSA)? 

• RSA refers to the spatial configuration of the 
entire root system.

• RSA is composed of:
• Morphology

• The surface shape, pattern, and size of individual plant root 
parts:

• Primary, secondary etc. growth.
• Root epidermis characteristics including root hairs.

• Topology
• How individual plant root parts are connected in terms of 

axes and branching.

• Distribution
• How individual plant root parts are distributed within a root 

system.
• Can be used to study biomass or length as a function of:

• Soil depth
• Distance from the stem…and more.



Study Objectives

• Compare AI model predictions:
• Random Forest + feature traits.
• ResNet-18 + segmented images.

• Test the ability of confident 
machine learning (CL) and 
reactive machine learning (RL) to:

• Minimize subjective labeling errors.
• Improve labeling and prediction 

accuracies. Root phenotypes from UMN4561 and UMN4563 fourth cycle progenies.



Why Artificial Intelligence?

• Benefits of AI:
• Speed.
• Improved accuracy.

• Reduced error (automation).
• Capable of handling large amounts of data.
• Ability to reveal patterns in data.
• Mimic human intelligence.
• Reduced subjectivity (human bias).
• Can increase phenotypic selection speeds with early/rapid RSA 

analyses (~2-week-old plants, Bucciarelli et al., 2021).

Root structure architecture analyses coupled with AI is a 
push toward faster, more accurate, and less subjective 
phenotyping…

Photo by Stephen Ausmus



Experimental 
Design and Plant 
Materials

• Two image datasets:
• St. Paul, Minnesota populations (617 images).

• Bred for taproot type and branched type RSAs (UMN3233 & UMN3234).
• Burneyville, Oklahoma population (264 images).

• Commercial line (America’s Alfalfa Alfagraze 600 RR).
• Sampled/studied by Mattupauli et al. (2019) for RSA changes regarding root 

rot disease.
• Labeled by three experts using a protocol.

• Taproot (T), Intermediate (TB), and Branched (B).
• Segmented into binary images.
• Image augmentation applied (881*10 images).



Models Tested:
ResNet-18 and 
Random Forest

• ResNet:
• Deep CNN (DNN)
• Several model sizes to choose from (18, 34, 50, 101, and 152).
• Residual “Res” network “Net”.

• Identity shortcut connections can bypass intermediate layers (solid lines in 
adjacent figure B).

• Uses images (pixels) as input.
• Random Forest:

• Supervised ML algorithm.
• Randomly samples data and builds series of decision trees.
• Uses an ensemble of decision trees to make predictions.
• Can help reduce overfitting and bias.
• Uses feature data (tabular data) as input.





Confident Learning (CL) and Reactive Learning (RL)

• Confident learning (Northcutt et al., 2021) involves using the original 
model class prediction accuracies to determine label confidence:

• Uses a class’s probability threshold to determine label accuracy (confidence).
• Labels identified as low confidence are subjected to Reactive Learning.
• CL is a 3-step process:

• Pruning noisy data (searching for mislabeled data)
• Counting with probabilistic thresholds (training on clean data)
• Ranking which data to use during training (training with confidence)

• Reactive Learning:
• Image label error corrections based on CL analyses.

• Why CL+RL Methods?
• We want CLEAN/TRUE DATA!!!
• Garbage in = garbage out (model or data labels)



Datasets and Label Correction Combinations

• Minnesota data only
• Original labels

• ResNet-18
• Random Forest

• Corrected labels
• ResNet-18
• Random Forest

• ResNet-18 Cross-population
• Eight permutations

• Training/Testing
• OK original/MN original
• OK corrected/MN original
• OK original/MN corrected
• OK corrected/MN corrected
• MN original/OK original
• MN original/OK corrected
• MN corrected/OK original
• MN corrected/OK corrected 

• ResNet-18 Pooled
• Two permutations

• Training/Testing
• Pooled original labels

• 881 images
• Pooled original labels

• Only confident 
labels

• 608 images
• Highest ResNet-18 

overall accuracy in 
study (~75%)



Results

• CL algorithm:
• Minorly improved the Random Forest prediction 

accuracies (~1%).
• ResNet-18

• Cross population prediction accuracy improved ~8-13%

• Highest accuracy data combinations:
• CL/RL corrected datasets for predicting taproots 

(~86%).
• Pooled dataset + CL (~75%).



Model Prediction Accuracies

• Confident pooled data:
• Highest overall accuracy using ResNet-18 (~75%).
• Highest prediction accuracy for Taproot class RSA (86%).

• ResNet-18 and MN corrected label dataset.
• Highest Intermediate class RSA (65%).



Principal Component Analysis
• Used to visualize the label 

correction process…



Conclusions
• RSA images as direct inputs into Deep Neural Networks:

• Suitable replacement for traditional methods:
• Level I (manual measurements).
• Level II (features as input).

• Less error-prone than Level I and II.
• Less human input = less human bias.

• Confident Learning and Reactive Learning:
• Low-cost and time-efficient.
• Improve performance and may reduce overparameterization.
• Improved ResNet-18 prediction accuracies ~11-13%.

• Model refinements are needed to address shortfalls in 
prediction accuracy of intermediate RSA class.

• Endmember RSAs of the distribution are easier to classify than the 
middle…

• Continuous traits can be difficult to classify…
• Human labelers also have difficulty with intermediate RSA labels…
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Future Directions…

• Deploy ResNet model in mobile device RSA application (a 
mobile App)

• Put AI-driven RSA image analysis into farmers and stakeholder hands.
• Test methods to create synthetic data used for model training.
• Couple AI RSA analyses results with downstream traits such as 

yield, winter survival, etc.
• Investigate the possible relationship between RSA and yield via 

root/shoot allometry.
• Include digestibility, maturity, and biomass estimations based 

on image analyses into the mobile App functions.

Simulated roots – Lobet et al. (2016)
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Thanks for 
listening! 



Questions
and/or

Comments?
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